Overexpressing AtPAP15 enhances phosphorus efficiency in soybean.
نویسندگان
چکیده
Low phosphorus (P) availability is a major constraint to crop growth and production, including soybean (Glycine max), on a global scale. However, 50% to 80% of the total P in agricultural soils exists as organic phosphate, which is unavailable to plants unless hydrolyzed to release inorganic phosphate. One strategy for improving crop P nutrition is the enhanced activity of acid phosphatases (APases) to obtain or remobilize inorganic phosphate from organic P sources. In this study, we overexpressed an Arabidopsis (Arabidopsis thaliana) purple APase gene (AtPAP15) containing a carrot (Daucus carota) extracellular targeting peptide in soybean hairy roots and found that the APase activity was increased by 1.5-fold in transgenic hairy roots. We subsequently transformed soybean plants with AtPAP15 and studied three homozygous overexpression lines of AtPAP15. The three transgenic lines exhibited significantly improved P efficiency with 117.8%, 56.5%, and 57.8% increases in plant dry weight, and 90.1%, 18.2%, and 62.6% increases in plant P content, respectively, as compared with wild-type plants grown on sand culture containing phytate as the sole P source. The transgenic soybean lines also exhibited a significant level of APase and phytase activity in leaves and root exudates, respectively. Furthermore, the transgenic lines exhibited improved yields when grown on acid soils, with 35.9%, 41.0%, and 59.0% increases in pod number per plant, and 46.0%, 48.3%, and 66.7% increases in seed number per plant. Taken together, to our knowledge, our study is the first report on the improvement of P efficiency in soybean through constitutive expression of a plant APase gene. These findings could have significant implications for improving crop yield on soils low in available P, which is a serious agricultural limitation worldwide.
منابع مشابه
Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis.
Purple acid phosphatase (PAP) catalyzes the hydrolysis of phosphate monoesters and anhydrides to release phosphate within an acidic pH range. Among the 29 PAP-like proteins in Arabidopsis (Arabidopsis thaliana), AtPAP15 (At3g07130) displays a greater degree of amino acid identity with soybean (Glycine max; GmPHY) and tobacco (Nicotiana tabacum) PAP (NtPAP) with phytase activity than the other A...
متن کاملResponse of Seed and Oil Yields and Phosphorus Agronomic Efficiency of Soybean to Simultaneous Placement of Nitrogen with Phosphorus under Drought Stress
In order to study yield, yield components and agronomic efficiency of phosphorus in soybean affected by simultaneous placement of nitrogen with phosphorus, an experiment was carried out under moisture stress conditions, at Agricultural Research Station of Bu Ali Sina University, Hamedan, Iran in 2017 in a factorial split plot based on randomized complete block design with three replications. Th...
متن کاملGenetic improvement for phosphorus efficiency in soybean: a radical approach.
BACKGROUND Low phosphorus (P) availability is a major constraint to soybean growth and production. Developing P-efficient soybean varieties that can efficiently utilize native P and added P in the soils would be a sustainable and economical approach to soybean production. SCOPE This review summarizes the possible mechanisms for P efficiency and genetic strategies to improve P efficiency in so...
متن کاملAssociation analysis for detecting significant single nucleotide polymorphisms for phosphorus-deficiency tolerance at the seedling stage in soybean [Glycine max (L) Merr].
Tolerance to low-phosphorus soil is a desirable trait in soybean cultivars. Previous quantitative trait locus (QTL) studies for phosphorus-deficiency tolerance were mainly derived from bi-parental segregating populations and few reports from natural population. The objective of this study was to detect QTLs that regulate phosphorus-deficiency tolerance in soybean using association mapping appro...
متن کاملInfluence of Phytase on Tibia Bone Characteristics of Broiler Quail Fed on Corn-Soybean Meal Diets
BACKGROUND: Exogenous phytase enhances the utilization of plant phytate phosphorus in poultry. OBJECTIVES: In the present study the effects of exogenous phytase was investigated on tibia bone characteristics of white quail. METHODS: In a 2x2 factorial arrangement, eighty, 11-day old unsexed chicks were randomly divided into 4 treatments of 20 replicates. All birds received one of four experimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 151 1 شماره
صفحات -
تاریخ انتشار 2009